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Morphogen gradient formation in a complex environment: An anomalous diffusion model
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Current models of morphogen-induced patterning assume that morphogens undergo normal, or Fickian,
diffusion, although the validity of this assumption has never been examined. Here we argue that the interaction
of morphogens with the complex extracellular surrounding may lead to anomalous diffusion. We present a
phenomenological model that captures this interaction, and derive the properties of the morphogen profile
under conditions of anomalous (non-Fickian) diffusion. In this context we consider the continuous time random
walk formalism and extend its application to account for degradation of morphogen particles. We show that
within the anomalous diffusion model, morphogen profiles are fundamentally distinct from the corresponding
Fickian profiles. Differences were found in several key aspects, including the role of degradation in determin-
ing the profile, the rate by which it spreads in time and its long-term behavior. We analyze the effect of an
abrupt change in the extracellular environment on the concentration profiles. Furthermore, we discuss the
robustness of the morphogen distribution to fluctuations in morphogen production rate, and describe a feedback
mechanism that can buffer such fluctuations. Our study also provides rigorous criteria to distinguish experi-

mentally between Fickian and anomalous modes of morphogen transport.
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I. INTRODUCTION

Multicellular organisms develop through the specification
of particular tissue types in well defined spatial positions.
Often, such patterning is mediated by signaling molecules,
termed morphogens, which can induce several cell fates in a
concentration-dependent manner. Morphogens are produced
at localized sites, and spread into the tissue to define a long-
range concentration gradient. Cells across the tissue under-
take a specific cell fate according to the morphogen level at
their position. Molecules that function as morphogens in a
wide range of organisms include the Bone-morphogenesis
protein (BMP/Dpp/Nodal), the Hedgehog (Hh), and the
Wingless (Wg/Wnt) families (reviewed in Refs. [1,2]).

Understanding how morphogen gradients are established
and maintained is a central issue in developmental pattern-
ing. Morphogens move within the extracellular milieu that is
densely packed with proteins that belong to a family called
heparan sulfate proteoglycans (HSPG). Recent studies dem-
onstrated that the interaction of morphogens with HSPG
plays a crucial role in defining the morphogen profile (re-
cently in Refs. [3-8] and reviewed in Refs. [1,9]). HSPG
proteins reside on the cell surface and are linked to saccha-
ride chains that undergo a variety of modifications and form
binding sites for morphogens [9]. Important features of the
HSPG and their saccharide chains are their high degree of
molecular heterogeneity and the disordered structures they
form. It has been suggested that HSPG can facilitate mor-
phogen movement through several mechanisms, including
diffusion through HSPG binding sites [5], movement of the
saccharide chains or the entire HSPG together with the
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bound morphogens [5,9], or active transport that includes
cellular uptake and secretion of morphogens (transcytosis)
[10,11].

All current models assume that morphogen movement in
the extracellular environment is described by Fickian, i.e.,
“normal,” diffusion, and can thus be modeled using a con-
ventional reaction-diffusion formalism (e.g., Refs. [11-14]).
Underlying this notion is the assumption that morphogens
move via a series of random transitions, which are character-
ized by a well-defined length scale and a finite mean transi-
tion time. However, this Fickian assumption often does not
hold for transport phenomena in disordered, microscopically
heterogeneous structures. Indeed, experiments in diverse sys-
tems, including carrier transport in amorphous materials
[15,16], diffusion in polymers [17-19], turbulent systems
[20], and flow through porous media [21,22] identified
anomalous, rather than Fickian, transport. Moreover, move-
ment of proteins on cell membranes (reviewed in Refs.
[23,24]) and inside cells (for example, Refs. [25-27]) has
been shown to accord with anomalous transport. In such
cases continuous time random walk (CTRW) theory [28-30]
offers a viable framework to quantify this behavior.

In this study we use the CTRW formalism to describe the
possible impact of anomalous diffusion on morphogen distri-
bution, extending the theory to include morphogen particle
degradation. We show that the anomalous diffusion profile
converges rapidly to an exponential shape, whose amplitude
and length scale increase with time. For potentially long pe-
riods of time the anomalous diffusion profile is insensitive to
degradation, but depends on parameters describing the inter-
action with the extracellular environment. Unlike in Fickian
diffusion, the morphogen profile does not approach a steady
state but continues to evolve in time, albeit at a vanishingly
slow rate. We discuss the capacity of the anomalous profile
to buffer fluctuations in morphogen production rate, and de-
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FIG. 1. Random walk model for anomalous diffusion. (a) Scheme of suggested random walk model: A morphogen is released from a
source and performs transitions of a random distance and direction along the x axis. The time required to complete a transition Af is a random
variable from a distribution ¢(Ar). At the start (or end) of each transition the morphogen can be degraded with a probability p. (b) Possible
forms of transition time distributions. Shown are Gaussian and exponential distributions (mean and standard deviation equal to 1) and power

law distributions (Eq. (1), 7=1).

scribe a feedback mechanism that ensures this robustness.
Finally, we derive rigorous criteria to distinguish experimen-
tally between Fickian and anomalous transport.

II. THEORY AND ANALYSIS
A. Random walk model for morphogen diffusion

Morphogen movement can be described using the follow-
ing random walk formalism [Fig. 1(a)]. We assume that mor-
phogen molecules are produced continuously in a one-
dimensional domain at some fixed position (x=0) and move
by a series of hops, referred to as “transitions.” The duration
of each such transition is Az, and its distance is Ax, in a
random direction; Ax is much smaller than the order of the
cell size. After a morphogen molecule completes a transition,
it can be degraded with some probability p, or perform an-
other hop with the probability 1-p. Hence, morphogen deg-
radation occurs only at the end of a transition, and the mor-
phogen is protected during the time of the transition itself.

This random walk model is a generic model for diffusion
with degradation. Physically, the surrounding in which the
morphogen moves determines the distributions of the transi-
tion times and the transition lengths, which we denote by
(Ar) and f(Ax), respectively. Morphogen entrapment within
HSPG could enter this scheme by leading to long transition
times. To account for this we consider a power law form for
the transition time distribution

-1-8
WAD) ~ 1(A—I) , (1)
T T

where 7 is some constant with dimension of time. Indeed,
this distribution decays slowly for long transition times
[compared, for example, to Gaussian or exponential forms,
Fig. 1(b)], and the power law exponent, B, controls the
prominence of long transition times [Fig. 1(b)]. When S
<1, long transition times become so dominant that the mean
transition time is, in fact, infinite. Phenomenologically, 8
quantifies the degree of interaction between HSPG and mor-
phogens, and serves as a criterion to differentiate between
anomalous and Fickian diffusion [Fig. 2(a)]: When 8>1 the
probability to encounter high transition times is negligible

and the diffusion is Fickian, but for S<<1 high transition
times are prominent and the diffusion is anomalous (for a
more rigorous discussion of this behavior see Ref. [31]).

B. Analytical derivations using CTRW

To obtain analytical expressions from the random walk
model we use the CTRW formalism. The CTRW framework
relates the morphogen concentration profiles to the two
aforementioned distributions (Ar) and f(Ax). To account
for degradation of morphogen particles we extend the CTRW
formalism through the inclusion of a degradation time distri-
bution ¢(Ar) [32]. Degradation and movement are assumed
to be mutually exclusive, hence, for example, degradation
can occur only after the completion of a transition. From this
condition the transition time distribution normalizes to 1-p
and the degradation time distribution normalizes to p [32]

p= fo d()dr=1- fo Y(r)dr.
0 0

Note that if we were to assume an alternative case, in which
degradation is independent of transitions and has a constant
rate, then long transition times will be eliminated and
anomalous behavior will not prevail (not shown here).

We first analyze the spatial distribution of morphogens
due to a unit pulse of morphogens (also termed the Green’s
function), C;(x,7), and only then introduce continuous mor-
phogen production. Cg(x,?) is equivalent to the probability
of finding a morphogen at position x at time #, and it can be
expressed by

t
Cglx,1) = f II(t=1")R(x,t")dt’, (2)

0
where R(x,1) is the probability for a morphogen to “just ar-
rive” at position x at time ¢, and I1(¢) is the probability of not

leaving position x or being degraded during a time period of
length  [32]:

[ =1- f Pt )dt' - f G(t")dt' . (3)
0 0
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FIG. 2. Causes and effects of anomalous diffusion. (a) A morphogen particle undergoing diffusion encounters a large number of transition
events with various transition times represented by hourglass sizes. Over distances on the order of the cellular scale the diffusion becomes
Fickian (left) if there is a narrow distribution of transition times, and anomalous if the distribution is broad and allows very high transition
times (right). The parameter B that is defined in Eq. (1) separates between the two cases. (b) Total number of morphogens vs. time for
Fickian diffusion and various values of 3. Crosses point at time tdegz)\l}l/ B, near which the transition between the early and late time regimes
occurs. (¢) The concentration profile at the early time regime. Plotted for 8=0.5 and for various times appearing in the legend. (d) The
relative rate of change in concentration, (1/C)(JC/dt), at a specific position was plotted for various values of B appearing in the legend. The
plot is for x=10, but similar behavior is obtained for other positions. (¢) Modeling the effect of clones via a sharp change of 8. The values
of B are 8=0.3 and $=0.7 in the ranges |x| <10 and |x| > 10, respectively. Degradation is assumed to be negligible. Plots are the result of
a numerical inverse Laplace transform [56] of Egs. (47a) and (47b) in Sec. V of Ref. [57]. Concentration is normalized to the maximum
concentration. Unless otherwise mentioned all plots were generated by performing a numerical inverse Laplace [56] of Egs. (13) or (10)
derived in Sec. II. Parameter values are A=Ag=0.001, Jy=1, and D=Dg=1.

Using standard CTRW methods [28-30] the Fourier-
Laplace transform of R(x,f) can be expressed by

1
1 - k) flu)

where k is the Fourier variable replacing distance and u is the
Laplace variable replacing time. The hat and the tilde denote
Fourier and Laplace transformed functions, respectively.
Substituting Eq. (4) and the Laplace transform of Eq. (3) into
the Fourier-Laplace transform of Eq. (2) we find

Rk.u) = )

Ju)-pw) 1 |
u 1= f(k) §(u)

A constant influx of morphogens entering at x=0 can be
viewed as the integration over time of a pulse input

Eolln) = 2= (5)

1

C(x,t) = Jof Colx,t")dt’, (6)
0

where J is the morphogen production rate in units of mor-
phogen quantity per area per time. From Egs. (5) and (6) we
obtain

- g(u) - pu) 1 | )
W )

Equation (7) is a general expression for the concentration
profile of a system with degradation and constant production,

Clk,u) =J,

and can be used with any form of the transition and degra-
dation distributions.

We now introduce asymptotic forms for (At), ¢(At), and
f(Ax). We assume that degradation is instantaneous

B(Ar) = p&(Ar). (8)

We consider a transition time distribution that has a power
law tail with an exponent 8<1 [Eq. (1)]. The transition
lengths are assumed to be distributed with a mean of zero
(unbiased walk) and a finite variance [*. We are interested in
the concentration profile over distances that are much larger
than the scale of single transitions, x>/, and in times that are
t> 7. Under these conditions (Ar) and f(Ax) are approxi-
mated by (see Sec. I of Ref. [57] for derivation)

Pu) = (1=p)[1 - (mw)*], (9a)
R 12
flk)=~1- Ekz, (9b)
and
2
vﬂmiw>z<1—p(1—(noﬁ—%kﬂ. (%)

The approximation in Eq. (9a) is valid only for 0<8<1.

As mentioned before, we assume that degradation is in-
stantaneous and is given by Eq. (8). Substituting Egs.
(92)—(9c¢) and (8), into Eq. (7), and taking the inverse Fourier
transform, we obtain for small p
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~ Jo exp(— mlx]|)

Cloeu) = 2T 10

(e.2) 2 Dﬁmuz‘ﬂ (10)
where

m=Dﬁ_”2\e”)\B+uB, (11)

with D g= 12/27# and )\ﬁ=p/78. A similar function for C(x,)
was obtained from a different method based on the Montroll-
Weiss equation (see Sec. II of Ref. [57] for derivation).

The total number of morphogens in the system S(z) is
found by taking k=0 in Eq. (7), which is equivalent to inte-
grating the concentration over the entire space

Suyos B0 =801

“ 1= yfu)
In Section III of Ref. [57] we rederive Eq. (12) indepen-
dently of the spatial diffusion component. Upon substitution

of functional forms in Egs. (9a)-(9¢) and (8), into Eq. (12)
we obtain

(12)

N (13)

S0 = B0 )

To complete the solution, we derived analytical approxima-
tions for the inverse Laplace transform of Egs. (10) and (13)
(Sec. IV of Ref. [57]).

C. Simulations

All results derived by CTRW were verified using direct
numerical simulations of the random walk model. Morpho-
gen diffusion is simulated by a series of discrete transition
events. The transition time is represented as the time a mor-
phogen waits before moving. When the duration of the tran-
sition time ends, the morphogen can either move with prob-
ability 1—-p or degrade with probability p. Movement is
implemented by adding a pseudorandom number to the po-
sition of the morphogens, sampled from the Gaussian distri-
bution with mean zero and variance />. After each movement
a new transition time is generated from a power law distri-
bution that accords with Eq. (1):

-1-B
+ 1) , (14)

B [ At
P (A1) = hPLT( hop 7
where hipp =T°(1-B8)""E. The value of hpy is set such that the
Laplace transform of p; (A7) and the transition time distri-
bution used in the analytical derivation [Eq. (9a) with p=0]
have the same asymptotic (x—0) functional form. At any
given time step the concentration profile is deduced from the
histogram of the morphogen positions.

To reduce computation time we simulate concentration
profiles that result from a pulse input of morphogens, and
then numerically integrate the results over time to obtain the
response to a constant production of morphogens. This
method can be utilized only when morphogen transitions are
independent of each other and of time. To simulate recovery
experiments and feedback scenarios we add particles at every
time step instead of performing the integration.
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III. RESULTS

In the next sections we describe the properties of concen-
tration profiles that are generated if HSPG trap diffusing
morphogens for long periods of time, leading to anomalous
transport [Fig. 2(a)]. We compare these profiles to profiles
generated by a Fickian diffusion process. We then focus on
the system from a biological perspective, by analyzing the
effect of mutants and macroscopic heterogeneities in HSPG,
by studying the robustness of the morphogen gradients to
fluctuations and by suggesting experimental methods for
validating the anomalous behavior.

A. Parameters controlling morphogen profile
under conditions of anomalous diffusion

A major difference between a random walk model under
Fickian assumptions and a random walk model with a broad
transition time distribution is apparent in the number of mo-
lecular transitions of an average morphogen particle, (1) .
When the diffusion is Fickian, (n), is proportional to time,
and the parameters that control the morphogen distribution
are the three parameters of the reaction-diffusion equation:
the morphogen production rate J,, the degradation rate N and
the diffusion coefficient D.

However, when long transition times dominate, the aver-
age number of transitions increases as a power law with time

t B
<n>(t)°‘(;_) , (15)

where 7 is some time constant, and the value of 3, that sig-
nifies the interactions with the HSPG, is smaller than one.
This scaling law changes the behavior of the morphogen
distribution and rescales the diffusion and degradation coef-
ficients. The length scale of the concentration profile be-
comes \Dgt? (Appendix A), with a generalized diffusion co-
efficient [33] Dj given in dimensions of length per time to
the power of B. In addition, the time 7,4, at which degrada-
tion begins to play a role in shaping the profile is given by
N ﬁtdﬁeg=1 (Appendix A), with a degradation coefficient A 5 in
dimensions of time to the power of — (see Sec. II B for
exact definitions of Dz and Ag). Notably, as B approaches
one, the parameters controlling Fickian and anomalous pa-
rameters become identical.

B. Time-dependent morphogen profile
under conditions of anomalous diffusion

Using the CTRW framework, we find a rigorous solution
of the morphogen concentration profile as a function of time
(Sec. IV of Ref. [57]). We identify two time regimes of the
solution [Table I, Fig. 2(b)]. At early times, when \ ﬂtﬁ <1,
degradation is negligible and morphogen quantity rises lin-
early with time. The shape of the morphogen profile at the
early time regime converges rapidly to an exponential [Fig.
2(c) and Table I], with both its amplitude and spread increas-
ing as a power law with time. The exponent of this power
law is related to B/2 (Table I). Hence in the early time re-
gime HSPG properties, as captured by /3, set the profile
rather than degradation.
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TABLE 1. Expressions for morphogen profile and total morphogen quantity, for the reaction-diffusion
model (Fickian diffusion) and anomalous diffusion model. J;, is the morphogen production rate in units of
morphogen quantity per time per area, D is the diffusion coefficient, Dy is its analog for anomalous diffusion,
\ is the degradation rate and Ag is its anomalous diffusion counterpart. The expressions for anomalous
diffusion are first-order approximations. For more elaborate expressions and derivation see Sec. IV of Ref.

[57].

Anomalous diffusion

Reaction diffusion (Fickian)

Early time regime

AgtP<1

Profile shape Exponential

A(r)e~0x
Profile amplitude A(r) Jo_ =g

2\Dg
Profile inverse length 1_1_ a2
scale a(f) Dy
Total morphogen per Jot

unit area

Late time regime

Presteady state Steady state

AgtP>1 A< A1
Exponential Gaussian profile Exponential
A()e™® to exponential Ae™®
Jo_ o Jo_
2VNgDg 2V\D
\g/Dg VN/D
&[l—ﬁ @(l—e_)") JO/)‘
Ng N

Conversely, at late times, when A Btﬁ > 1, degradation
plays an important role in shaping the morphogen distribu-
tion (Table I). Interestingly, at those late times, the total num-
ber of morphogens continues to rise [Fig. 2(b) and Table I].
Thus, in contrast to the case of Fickian diffusion, the anoma-
lous diffusion profile does not reach a steady state, and its
amplitude continues to grow in time (Table I). Also, the Fick-
ian diffusion profile assumes an exponential shape only at
the steady state, whereas the anomalous diffusion profile
reaches an exponential shape already at the early time regime
[Table I and Fig. 2(c)].

A consequence of this analysis is that morphogen concen-
tration profiles depend on time. However the rate at which
they evolve becomes vanishingly small with time, and will in
practical terms appear to be stable [Fig. 2(d)].

As we discuss below, morphogen degradation may be
subject to genetic or environmental fluctuations. The early
time regime, being degradation independent, is responsive to
fewer types of fluctuations and is thus more advantageous
than the late time regime, which is degradation dependent.
Moreover, the anomalous diffusion at the early time regime
is more robust to degradation than is the reaction-diffusion
model at steady state, which also depends on degradation
(Table I). Therefore, in the following we focus the discussion
on the early time regime.

C. Gradients with a sharp change in
show a time-dependent discontinuity

The analysis above considered morphogens that move in a
field with a constant 83, corresponding to a uniform distribu-
tion of HSPG across the tissue. Yet, a common experimental
practice to study HSPG is through generation of clones of
HSPG mutant cells within the wild type tissue (e.g., Refs.
[4,6,34]). To facilitate the understanding of such studies in

the situation of anomalous diffusion, we consider mutated
HSPG clones characterized by a 8 value that is distinct from
that found elsewhere in the field, and study the behavior at
the clone boundary (Appendix B).

When B changes abruptly in space, morphogens accumu-
late at the region with the lower B, leading to a time-
dependent discontinuity of the profile at the clone boundary
[Fig. 2(e)]. We find that the ratio of the morphogen concen-
trations on the two sides of the clone boundary increases as a
power law (Appendix B and Sec. V of Ref. [57]):

Cl(xth’[) ~ [:BZ_BI’
Cy(xips1)

where C; and C, denote concentrations closer and further
from the source, respectively, and xg, is the position of the
boundary. Also, far from the clone boundary C,(x,7) assumes
the same slope as the anomalous profile described above
(Table I), with a constant 8=p,.

(16)

D. Robustness to morphogen production rate

To ensure reliable developmental patterning, morphogen
gradients need to be buffered against environmental and ge-
netic fluctuations. Because morphogens are produced only in
a specific position, but they spread throughout the tissue,
buffering fluctuations of the morphogen production rate is
particularly important. We have shown recently that the sen-
sitivity of the profile to the production rate depends on the
slope of the morphogen profile close to its source [12]. In the
present case of anomalous diffusion this slope is controlled
by B. Indeed, the shift in the profile following a change in
production rate is significantly more pronounced for high 8
than for low B [Figs. 3(a) and 3(b)]. Yet, lowering B also
reduces the spatial range of the morphogen [Fig. 3(a)]. In
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FIG. 3. Robustness to morphogen production rate. (a) Effect of doubling morphogen production rate on the concentration profile. Solid
lines are unperturbed concentration profiles, and dotted lines represent the effect of doubling production rates. Black bold and black thin lines
are morphogen profiles without feedback for S=0.1 and 8=0.5, respectively. Shown in gray are feedback simulation results (Sec. I C; Sec.
VI of Ref. [57]) with 8=0.1 above a threshold concentration and 8=0.5 below it. The threshold value is 50 morphogens per unit area. The
plots for each value of 3 are normalized to the maximal concentration. Original production rate is 1 morphogen per time unit. Concentrations
shown in the figure are for #=1000, with 3 X 10°® morphogen particles in the system (3000 morphogens were added per time step). Results
are an average of 45 simulations. The bin size used in the simulations to calculate morphogen concentrations from the histogram of the
morphogen positions was 1/64 length units (see Sec. VI of Ref. [57] for simulation details). (b) The shift in the position of cells responding
to a certain concentration, when morphogen production rate is doubled. The shift is plotted against the original position of the cells, and is
a measure of the robustness—small shifts signify systems that are robust to morphogen production rate.

fact, this opposing interplay between the capacity to buffer
fluctuations and the spatial morphogen range is inherent to
exponential profiles which are characterized by a single de-
cay length [12].

A possible way to break the interplay between robustness
and spatial range is to introduce a feedback that enhances the
decay of the profile close to the source [12]. In the case of
Fickian diffusion this can be achieved through enhancement
of morphogen degradation in a morphogen-dependent man-
ner [12], but because the anomalous diffusion profile does
not depend on degradation we consider an alternative feed-
back which reduces B near the source. Indeed, an effect of
morphogen signaling on HSPG was observed, either via
modulation of some HSPG property, e.g., induction of an
HSPG-modifying enzyme [7,8,35-38], or by changing the
level of the HSPG themselves [34,39]. To study such a feed-
back mechanism, we simulate a system where 8 depends on
the morphogen level (for simulation details see Sec. IT herein
and Sec. VI of Ref. [57]). Specifically, we assume that
B=p; in regions where morphogen levels are above some
threshold, while in regions of lower morphogen levels S as-
sumes a higher value 3,> ;. We note that this situation
differs from the case of a clone discussed above, because
here the spatial boundary between the regions of differential
B are co-established with the concentration itself, rather than
being left unchanged throughout the build-up of the concen-
tration profile.

Simulation results demonstrate that such feedback indeed
enhances buffering capacity, while still allowing morphogens
to reach a wide spatial range [Figs. 3(a) and 3(b)]. In fact, the
sensitivity of the system to perturbations in morphogen pro-
duction rate is defined by the low value B=pf,, while its
spatial range is defined to a good approximation by the
higher value B3, [Figs. 3(a) and 3(b)]. Thus, a feedback that
alters HSPG properties and defines lower 8 values in a re-

gion of high morphogen level breaks the interplay between
robustness and spatial range and provides a general means
for enhancing the capacity to buffer fluctuations in morpho-
gen production rate.

E. Toward experimental verification of anomalous diffusion

Our analysis above shows that under conditions of
anomalous diffusion, the behavior of the morphogen distri-
butions differs considerably from the case of the commonly
assumed Fickian diffusion. These results reinforce the need
to examine whether in actual systems morphogen diffusion is
Fickian or anomalous. Some information could, in theory, be
gathered from visualization of the concentration profile using
GFP fusion or direct antibody staining (e.g., Refs.
[7,10,40,41]). However, such methods are compromised by
the difficulties in obtaining precise quantitative descriptions
of the morphogen levels over long times, and the fact that
quantitative values of the diffusion or degradation param-
eters are not available. We therefore consider an alternative
means to distinguish experimentally between the anomalous
and the Fickian diffusion situations.

Fluorescent recovery after photobleaching (FRAP) is a
common approach to analyze diffusion properties. In this
method, the diffusing protein is tagged by a fluorescent
marker, and in the course of the experiment the fluorescence
is removed in a well-defined region via photobleaching.
Measurement of the temporal recovery of fluorescence inside
the bleached region can then be used to extract quantitative
information on the diffusion [42-44]. FRAP has been used in
the past to characterize anomalous diffusion on the level of a
single cell (e.g., Refs. [45,46]), and we suggest to extend it to
the tissue scale.

To examine whether FRAP experiments can be used to
distinguish between Fickian and anomalous diffusion in mor-
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FIG. 4. FRAP simulations. Recovery is shown on log-log scales,
such that the slopes of the curves represent the power law expo-
nents. Recovery under condition of anomalous diffusion (8=0.5,
dashed line) rises with a power law exponent 1— /2. Fickian dif-
fusion (dotted line) rises with a power law exponent of 0.5 for short
times. Simulations of anomalous diffusion in which the morphogen
transition times were set to zero before the bleach (dash-dot) re-
sulted in a power law exponent /2. The bleached region was be-
tween x=10 and x=20. In simulations of anomalous diffusion the
bleach time was 10* and in simulations of Fickian diffusion the
bleach time was 10°. The diffusion coefficients are Dg=D=1.
Curves are normalized to the value at r=1.

phogen gradients, we simulate such an experiment. We find
that in the case of anomalous diffusion, the intensity inside
the bleached region increases as t' =%/ (Fig. 4), distinguishing
it from Fickian diffusion, which rises as #'/2 at short times
[47]. The lower the value of B, the greater is the distinction
between Fickian and anomalous behavior.

We note that our results differ from those of a previous
analysis which predicted an increase of the form %2 [48].
This previous work, however, neglected the fact that at the
time of bleaching, a large fraction of morphogen molecules
are at midtransition and cannot be made available immedi-
ately for diffusion (Appendix C). It is in fact the time-
dependent release of those “trapped” morphogens that sig-
nificantly enhances the observed recovery exponent. (A more
analytical treatment of the problem using aging continuous
time random walks [49] is considered in Appendix C and in
Sec. VII of Ref. [57]). We thus suggest that FRAP experi-
ments can indeed be used to determine whether morphogen
diffusion in the presence of HSPG is described by Fickian or
anomalous diffusion.

IV. DISCUSSION

To precisely understand the impact of HSPG on shaping
morphogen gradients, a detailed description of the molecular
interactions between morphogens and HSPG is required.
While such data are not yet available, phenomenological
analysis can still be used to distinguish between different
qualitative effects of such an interaction. In particular, all
models of morphogen movement can be described math-
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ematically by a unified random walk formulation, whose
qualitative features are determined completely by the distri-
butions of the transition lengths and times.

Previous models of morphogen movement assume Fick-
ian diffusion (e.g., Refs. [11-14]), implying that the transi-
tion times are distributed around a finite mean. Yet the diver-
sity in HSPG structure and the multitude of their interactions
with the morphogens suggest otherwise. In fact, an emerging
notion, which is based largely on experiments in diverse sys-
tems, is that most natural processes that occur in complex
environments are better described by transition time distribu-
tions with a power law tail, leading to anomalous rather than
Fickian diffusion. To date the assumption of Fickian diffu-
sion in morphogen systems has not been verified, and the
possible impact of anomalous diffusion on morphogen distri-
bution has not been examined.

This study provides a rigorous framework for analyzing
morphogen profiles under conditions of anomalous diffusion.
Our main assumption is that the interaction between HSPG
and morphogens can be captured by the effective width of
the transition time distribution, which we describe by a phe-
nomenological parameter . To study the effect of long tailed
transition time distributions we utilize CTRW theory, and
extend it to incorporate the first-order reaction of morphogen
degradation. We show that for S8— 1 our model reduces to
the reaction-diffusion equation, while for 8<1 it allows long
transition times corresponding to anomalous diffusion.

The model requires that morphogens have a constant
probability for degradation per transition, rather than per unit
time. This could occur, for example, if the morphogen moves
by binding to a particular HSPG site and then hopping to an
alternative site. The hop may either be successful, or may
result in a loss of morphogen to the space away from the
surface of the cells (the equivalent of degradation). This
model is also compatible with the situation where binding to
the HSPG protects the morphogen from enzymes that can
degrade it. Indeed, the notion that HSPG are responsible for
enhanced morphogen stability was suggested by several au-
thors (e.g., Refs. [3,50]).

Our results demonstrate that anomalous diffusion drasti-
cally alters qualitative properties of morphogen distribution,
and presents the system with unique challenges. At early
times the anomalous morphogen profile is insensitive to mor-
phogen degradation, but is controlled by interactions with
HSPG. There is ambiguity in the literature on how important
morphogen degradation is for shaping the profile. For ex-
ample, Dpp degradation rate is faster than the rate of gradient
build-up [41] implying that degradation is important. In con-
trast, the Wingless morphogen gradient formation rate is
much faster [40], and is possibly on the order of magnitude
of Wingless degradation. As such, degradation may not con-
tribute to the build-up of the Wingless gradient.

If the impact of HSPG properties is greater than the im-
pact of the degradation rates, modulation of HSPG by mor-
phogens could serve as an important mechanism for control-
ling the properties of the morphogen profiles, as suggested
by experimental observations (e.g., Refs. [7,8,34,37-39]).
We showed that feedback on HSPG properties, which fol-
lows the principles of Ref. [12], induces robustness to fluc-
tuations in the morphogen production rate.
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Our analysis further revealed that when the field in which
diffusion occurs is broken into two regions of disparate tran-
sition time distributions, then the concentration profile shows
a time dependent discontinuity on the boundary between the
two regions. This striking finding can have implications to
the study of HSPG mutant clones inside a wild-type tissue.

Our model assumes diffusion in a one-dimensional do-
main. This is justified for situations such as development of
the Drosophila wing imaginal disc, which has an approxi-
mate two-dimensional geometry with morphogen secreted
from a linelike source. In other situations the geometry may
be more complex, but the methodology introduced and the
central qualitative results of our analysis are expected to be
independent of geometry.

Whether morphogen diffusion is anomalous or Fickian
remains an open question. Although some quantitative data
on morphogen gradient formation exist in the literature
[10,41], they are not at a high enough resolution to distin-
guish between the two types of diffusion. We suggest a rig-
orous experimental system, based on fluorescent recovery
after photobleaching (FRAP), that can achieve this distinc-
tion. Interestingly, the fluorescent recovery of the morphogen
system behaves differently than that predicted for systems
containing newly synthesized particles [48]. In light of the
likelihood of anomalous diffusion, further experimental work
is undoubtedly required to gain insight into this critical issue.
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APPENDIX A: SCALING CONSIDERATIONS
IN ANOMALOUS DIFFUSION

Many of properties of anomalous diffusion can be ex-
plained by the scaling of the number of transitions that an
average morphogen undergoes up to time . When the diffu-
sion is Fickian the average number of transitions is propor-
tional to ¢/, where 7, is the mean transition time. Con-
versely the average number of transition in anomalous

diffusion is
B
t
|2
<n>(z) ( 7_)
with 0< B<1.

The impact of degradation on the concentration profile
can be established by scaling considerations. Morphogens in
our model have a probability p of degradation at the end of
each transition, hence the average number of transitions until
degradation is 1/p. The time 7,4, beyond which degradation
determines the length scale of the profile corresponds to the
time at which (n)(, )=1 /p. By using the scalmg law in Eq.
(A1) we find that for anomalous diffusion A Btde =1, with a
generalized degradation coefficient A g=p/ >

(A1)
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The average distance a single morphogen particle
traverses, and hence the length scale of the profile is propor-
tional to / \/@ as for any random walk with transition length
[. Therefore, below A ﬁtde,<l the length scale of the profile
will be time dependent [Eq (A1)] and will behave similar to
VDgtP with a generahzed diffusion coefficient Dg=1%/27".
However, beyond A ﬁtd >1 the number of transitions cannot
exceed 1/p, and the length scale of the profile will scale like
VBIp p. These results are consistent with the analytical solu-
tion for the two time regimes discussed in Sec. III B of the
main text.

APPENDIX B: ANALYSIS OF A SHARP CHANGE
IN THE TRANSITION TIME DISTRIBUTION

When the transition time distribution changes abruptly be-
tween two regions of space a discontinuity may form on the
boundary between two regions. The notion of such disconti-
nuities in the concentration profile is described in the litera-
ture for Fickian diffusion [51,52], and is attributed to chemi-
cal equilibrium on the interface. This concept of “chemical
equilibrium” is obscure when applied to random walks, but it
provides insight into why a discontinuity develops at the
interface [53]. At equilibrium, the quantity of particles that
move from region 1 to region 2 must equal the quantity
leaving region 2 to region 1 (the net flux should be zero). If
the characteristic transition length in the two regions is /; and
I5, then the quantity of particles that leave from region 1 to
region 2 per unit area scales such as /,C,(xy){n;)(), where
(ny)( is the average number of movements (transitions) after
time ¢, and xy, is the position of the boundary between re-
gions 1 and 2. The expression for the quantity of particles
that leave from region 2 to region 1 is similar with a change
of subscripts. From the equilibrium of local fluxes, and by
using the scaling relation for (n), in Eq. (15) of the main
text we obtain

l—t PiC, (xy) =
Tf th 7'3
From Eq. (B1) we see that if the ratio /;/ 7% and 1,/ 74? is not
preserved, or when S varies between the two regions then a
discontinuity in the concentration will arise. Notably, this
discontinuity is still possible even as S— 1 and the diffusion
becomes Fickian.

A more mathematically rigorous boundary condition can
be formalized using CTRW. It is be derived from the con-
tinuous space limit of Eq. (12) in Ref. [54]:

30 2C2(xth) (B1)

R ~ ¢ e (1),
6()6,1,{): Ii(x,u)[l lf1(lzi)]/u, xe (1) )
Rx,w)[1 - ¢n(u)l/u, x € (2).

Here, R(x,1) is defined as the probability density function for
a morphogen to “just arrive” at position x at time ¢, and
subscripts (1) and (2) denote the two regions. We assume that
the transition length distribution is the same in all regions of
space, and therefore take ﬁ(x,u) to be continuous at the
boundary. Under this assumption Eq. (B2) leads to the
boundary condition
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él(xth’“) _ - 17’1(”)
62()%7“) 1- Jz(u)

In Sec. V of Ref. [57] we use this boundary condition and
the partial differential form of CTRW [55] to derive a com-
plete mathematical description of a region (clone) with dif-
ferent HSPG properties.

. (B3)

APPENDIX C: RECOVERY OF A BLEACHED REGION

In a FRAP experiment the recovery of fluorescence inside
a photobleached region is measured as a function of time.
The normalized intensity inside the photobleached region
should increase as the square root of time for short times
[47]. However, random walk simulations show that when the
diffusion is anomalous, the intensity rises with time as a
power law with an exponent of 1—£/2 (main text). Here we
demonstrate why an exponent larger than 1/2 arises and in-
vestigate in Section VII of Ref. [57] a simple model problem
for a recovery experiment.

The problem of recovery deals with the movement of
morphogens that have been in the system for times that are
of the order of the bleaching time 7,. It follows from scaling
considerations that such morphogens are not equivalent to
newly synthesized morphogens. If we denote the number of
transitions of a morphogen from =0 up to some time point ¢,
by (n)(,, then the number of transitions from 7, over the same
time period 7 is (1n)(4;,) = (1)) 1t follows immediately from
the scaling relation in Eq. (15) of the main text that the only
case where <n>([+,b)—<n)(,b):<n)(,) is when the diffusion is
Fickian. Therefore, the transitions of newly synthesized mor-
phogens are different from those that have stayed in the sys-
tem for time #,,.

To investigate the system of such “aged” morphogens, we
used results from aging continuous time random walks (AC-
TRW [49]). The ACTRW study shows that long after the
onset of diffusion, morphogen population can be divided into
two fractions: morphogens that are ready to perform new
transitions, and morphogens that are still in the middle of a
very long transition period and therefore are not free to dif-
fuse (Fig. 5).

The fraction of morphogens that are free to move p,, de-
pends on the bleaching time 7, and on the time that passed
since the bleaching ¢. The double Laplace transform of p,, is
[49]

1L () = lw)
ul1 - 4ds)]

where the tilde denotes the Laplace transformed function, u
is the Laplace variable replacing ¢, and s is a second Laplace

Pmls,u) = (C1)

u-—=s
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Single Time line
transition
—
Particle 1 H i i
Particle 2 H——++— } Tt
Particle 3 |+ } : H
Particle 4 |—+— H—F— —
£ Time from bleaching
Onset of to next transition
production Bleaching

FIG. 5. Scheme of transition times after bleaching. Vertical lines
denote the time-line in the life of a single morphogen particle and
horizontal lines denote the end of a transition. Most morphogens at
the bleaching time point (thick dashed line) are in the middle of a
long transition. This fraction of morphogens can be visualized as a
“store” that “releases” particles gradually with time. The “release”
time is the horizontal thick line.

variable that replaces 7,. #(u) and y(s) are the Laplace trans-
forms of the transition time distributions. When the diffusion
is anomalous the transition probabilities have the asymptotic
forms [49]

Wu) =1 -uf (C2a)

and

Ws)~1-sP. (C2b)

We assume also that the time period after bleaching is much
smaller than the time the morphogens spent in the system
until the bleaching. Hence r<<t, and u>s. Under this as-
sumption, and with the use of the approximations (C2a) and
(C2b), Eq. (C1) simplifies to

1

5m(s,u) = W (C3)
The inverse Laplace transform of Eq. (C3) is
1 t\17P

Pun(tp,) = m(g) : (C4)

We see from Eq. (C4) that the fraction of morphogens that
can diffuse increases in time as a power law. This time-
dependent increase is the reason for the increase in the re-
covery exponent. However, despite having a larger power
law exponent, recovery under conditions of anomalous dif-
fusion is slower than recovery in the case of Fickian diffu-
sion: whereas all morphogens are free to diffuse in Fickian
diffusion, the fraction of free morphogens is very small un-
der anomalous diffusion conditions.
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